

CODE BULLETIN C-58

American Chemistry Council Product Approval Code of Practice December 2010 Edition

To: Practitioners of the American Chemistry Council

Product Approval Code of Practice Interested Parties

Original

Issue date: November 3, 2017

Effective

Date: December 3, 2017

Re: Appendix F Revision- Defining MTEP for the Sequence IX

Product Approval Code of Practice – December 2010 Edition

The American Chemistry Council's (ACC) Product Approval Protocol Task Group (PAPTG) reached consensus to revise Appendix F for the purpose of defining Multiple Test Evaluation Procedures (MTEP) for the Sequence IX engine test. Existing text and proposed edits to Appendix F are provided below.

Existing Text on Page F-4 through F-7

	Type of	
Test	MTEP	Parameter (Units) (note 1)
Sequence IIIF	MTAC	Kinematic Viscosity (% increase at 40° C)
	MTAC	Avg. piston skirt varnish (merits)
	MTAC	Weighted piston deposit (merits)
	MTAC	Screened avg. cam plus lifter wear (µm)
	(note 2)	Hot stuck rings
Sequence IIIFHD	MTAC	Kinematic Viscosity @ 60 h (% increase)
Sequence IIIG	MTAC	Kinematic Viscosity (% increase at 40°C)
	MTAC	Weighted piston deposit (merits)
	MTAC	Avg. cam plus lifter wear (μm)
	(note 2)	Hot stuck rings
Sequence IIIGA	None	No MTEP, No MTAC
Sequence IIIGB	MTAC	Phosphorus retention (%)

Sequence IIIH	MTAC MTAC	Kinematic Viscosity (% increase at 40° C) Weighted piston deposit (merits)
Test	Type of MTEP	Parameter (Units) (note 1)
Sequence IIIHA	MTAC	MRV Viscosity (%)
Sequence IIIHB	MTAC	Phosphorus retention (%)
Sequence IVA	MTAC	Avg. cam wear (µm)
Sequence VG	MTAC MTAC MTAC MTAC MTAC (note 3)	Avg. engine sludge (merits) Rocker arm cover sludge (merits) Avg. piston skirt varnish (merits) Avg. engine varnish (merits) Oil screen clogging (%) Hot stuck compression rings
Sequence VID	MTAC MTAC	FEI 2 (%) FEI SUM (%)
Sequence VIE	MTAC MTAC	FEI 2 (%) FEI SUM
Sequence VIF	MTAC MTAC	FEI 2 (%) FEI SUM
Sequence VIII	MTAC	Bearing weight loss (mg)
Caterpillar 1K	TLM TLM TLM TLM (note 4) (note 5)	WDK (demerits) Top Groove Fill (%) Top Land Heavy Carbon (%) Avg. Oil Consumption (g/kW·h) Piston Ring Sticking (yes or no) Piston, Ring and Liner Scuffing (yes or no)
Caterpillar 1MPC (note 5)	MTAC (note 6) MTAC (note 4) (note 7)	WTD (demerits) Top Groove Fill (%) Piston Ring Sticking (yes or no) Piston, Ring and Liner Scuffing (yes or no)
Caterpillar 1N	TLM TLM TLM TLM (note 4) (note 5)	WDN (demerits) Top Groove Fill (%) Top Land Heavy Carbon (%) Oil Consumption (g/kWh) Piston Ring Sticking (yes or no) Piston, Ring and Liner Scuffing (yes or no)

Page 3			
Caterpillar 1P TLM		WDP (demerits)	
	TLM	Top Groove Carbon (demerits)	
	TLM	Top Land Carbon (demerits)	
	TLM	Avg. Oil Consumption (0-360h) (g/h)	
	TLM (note 5)	Final Oil Consumption (312-360h) (g/h)	
		Piston, Ring and Liner Scuffing (yes or no)	
Caterpillar 1R	TLM	WDR (demerits)	
r	TLM	Top Groove Carbon (demerits)	
	TLM	Top Land Carbon (demerits)	
	TLM	Avg. Initial (0-252 h) Oil Consumption (g/h)	
	TLM (note 5)	Avg. Final (432-504 h) Oil Consumption (g/h)	
	,	Piston, Ring and Liner Scuffing (yes or no)	
Caterpillar C13	MRS	Caterpillar C13 Merits	
Cutcipinal C13	(note 4)	Delta Oil Consumption (g/h)	
	(note 8)	Average Top Land Carbon (Demerits)	
	(Hote o)	Average Top Groove Carbon (Demerits)	
		Second Ring Top Carbon (Demerits)	
	Trung of	Second Minig 12p Current (2 cinerus)	
Test	Type of MTEP	Parameter (Units) (note 1)	
Cummins ISM	MRS	Cummins ISM Merits	
	(note 8)	Crosshead Weight Loss (mg) Injector	
		Screw Wear (mg)	
		Oil Filter Pressure Delta (kPa)	
	TLM	Sludge (merits)	
CIGD		Top Ring Weight Loss (mg)	
Cummins ISB	TLM	Average Camshaft Wear (µm) Average	
M1-T 0	TLM	Tappet Weight Loss (mg)	
Mack T-8	TLM	Viscosity Increase at 3.8% soot (cSt)	
	TLM	Filter Plugging, Differential Pressure (kPa) Oil	
	TLM	Consumption (g/kWh)	
Mack T-8E	TLM	Viscosity Increase at 3.8% soot (cSt)	
	TLM	Relative Viscosity at 4.8% soot (unitless number)	
Mack T-11	TLM	TGA % Soot @ 4.0 cSt increase @ 100° C	
		TGA % Soot @ 12.0 cSt increase @ 100° C	
		TGA % Soot @ 15.0 cSt increase @ 100° C	
Mack T-12	TLM	Liner Wear, µm	
(note 9)		Top Ring Mass Loss, mg	
		Lead Content at EOT, mg/kg	
Mack T-12	MRS	Cylinder Liner Wear, µm	
(note 10)		Top Ring Mass Loss, mg	
		Delta Pb @ EOT, mg/kg	
		Delta Pb 250 to 300 hours, mg/kh	
		Oil Consumption, g/hr	

Page 4

Mack T-12 (note 11)	MTAC (note 12)	Top Ring Mass Loss, mg Cylinder Liner Wear, μm
Volvo T-13	TLM	IR Peak at EOT, Abs., cm ⁻¹ Kinematic Viscosity Increase at 40°C, %
COAT	MTAC (note 12)	Average Aeration, 40h to 50h, %

Notes:

- 1) Units for parameters in italics are transformed. See next section for specific transformations.
- 2) The majority of retained tests must not have ring sticking (hotstuck).
- 3) The majority of retained tests must not have compression ring sticking (hot stuck).
- 4) None of the retained tests may have piston ring sticking.
- 5) If three or more operationally valid tests have been run, the majority of these tests must not have scuffing. Any scuffed tests are considered non-interpretable, and no data from these tests are to be used in MTEP calculations.
- 6) Two methods of calculating WTD are used, one for API Category CF and a different one for API Category CF-2. Both methods use MTAC for handling testresults.
- 7) None of the retained tests may have piston, ring or linerscuffing.
- 8) The parameters used in calculating the Merit Rating value are shown.
- 9) This TLM applies to Mack T-12 used in API Category CH-4.
- 10) This MRS applies to Mack T-12 used in API Category CI-4 and CJ-4.
- 11) This MTAC applies to Mack T-12 used in API Category CK-4 and FA-4.
- 12) The MTAC provision to discard any valid test result is not applicable (See Appendix F, pg. F-3, Three or More Tests, Number 2).

List of Transformations of Rated Parameters

Test	Parameter	Transformation
Sequence IIIF	Viscosity, % Increase	1/square root of the % increase at 80 hours
Sequence IIIFHD	Viscosity, % Increase	LN (PVISH060)
Sequence IIIG	Viscosity, % Increase	LN (PVISH100)
	Avg. cam plus lifter wear	LN (ACLW)
Sequence VG	Oil Screen Clogging	LN (oil screen
		clogging +1)
Caterpillar 1K	Top Land Heavy Carbon	LN (TLHC + 1)
Caterpillar 1N	Top Land Heavy Carbon	LN (TLHC + 1)
Caterpillar 1P	Average Oil Consumption	LN (AOC)
_	Final Oil Consumption	LN (FOC)
Caterpillar C13	Delta Oil Consumption (g/h)	Square root (Delta OC)
	Second Ring Top Carbon	LN(R2TC)
Mack T-12	Delta Pb @ EOT	LN (DPbEOT)
	Delta Pb 250 to 300 hours	LN (DPb250300)
	Oil Consumption	LN (OC)

Page 5

Cummins ISM	Oil Filter Pressure Delta	LN (OFDP)
Volvo T-13	Kinematic Viscosity Increase at 40°C	Square root (KV40)
Sequence IIIH	Kinematic Viscosity (% increase at 400 C)	LN (PVIS)
Sequence IIIHA	MRV Viscosity (%)	LN(MRV)

Proposed Text on Page F-6 through F-7

Test	Type of MTEP	Parameter (Units) (note 1)
Sequence IIIF	MTAC	Kinematic Viscosity (% increase at 40° C)
	MTAC	Avg. piston skirt varnish (merits)
	MTAC	Weighted piston deposit (merits)
	MTAC	Screened avg. cam plus lifter wear
	(note 2)	(μm) Hot stuck rings
Sequence IIIFHD	MTAC	Kinematic Viscosity @ 60 h (% increase)
Sequence IIIG	MTAC	Kinematic Viscosity (% increase at 40°C)
	MTAC	Weighted piston deposit (merits)
	MTAC	Avg. cam plus lifter wear (µm)
	(note 2)	Hot stuck rings
Sequence IIIGA	None	No MTEP, No MTAC
Sequence IIIGB	MTAC	Phosphorus retention (%)
Sequence IIIH	MTAC	Kinematic Viscosity (% increase at 40° C)
	MTAC	Weighted piston deposit (merits)
Test	Type of MTEP	Parameter (Units) (note 1)
Sequence IIIHA	MTAC	MRV Viscosity (%)
Sequence IIIHB	MTAC	Phosphorus retention (%)
Sequence IIIHB Sequence IVA	MTAC MTAC	Phosphorus retention (%) Avg. cam wear (µm)
	-	• • • • • • • • • • • • • • • • • • • •
Sequence IVA	MTAC	Avg. cam wear (μm)
Sequence IVA	MTAC MTAC	Avg. cam wear (µm) Avg. engine sludge (merits)
Sequence IVA	MTAC MTAC MTAC	Avg. cam wear (µm) Avg. engine sludge (merits) Rocker arm cover sludge (merits) Avg. piston skirt varnish (merits) Avg. engine
Sequence IVA	MTAC MTAC MTAC MTAC	Avg. cam wear (µm) Avg. engine sludge (merits) Rocker arm cover sludge (merits) Avg. piston skirt varnish (merits) Avg. engine varnish (merits)
Sequence IVA	MTAC MTAC MTAC MTAC MTAC	Avg. cam wear (µm) Avg. engine sludge (merits) Rocker arm cover sludge (merits) Avg. piston skirt varnish (merits) Avg. engine
Sequence IVA	MTAC MTAC MTAC MTAC MTAC MTAC MTAC	Avg. cam wear (µm) Avg. engine sludge (merits) Rocker arm cover sludge (merits) Avg. piston skirt varnish (merits) Avg. engine varnish (merits)

	1 ype or	
	Type of	
		Second Ring Top Carbon (Demerits)
	(Hote 6)	Average Top Land Carbon (Demerits) Average Top Groove Carbon (Demerits)
	(note 4)	Average Top Land Carbon (Demerits)
Caterpillar C13	(note 4)	Caterpillar C13 Merits Delta Oil Consumption (g/h)
Cotorniller C12	MRS	
	TLM (note 5)	Avg. Final (432-504 h) Oil Consumption (g/h) Piston, Ring and Liner Scuffing (yes or no)
	TLM (note 5)	Avg. Initial (0-252 h) Oil Consumption (g/h)
	TLM	Top Land Carbon (demerits)
	TLM	Top Groove Carbon (demerits)
Caterpillar 1R	TLM	WDR (demerits)
		Piston, Ring and Liner Scuffing (yes or no)
	TLM (note 5)	Final Oil Consumption (312-360h) (g/h)
	TLM	Avg. Oil Consumption (0-360h) (g/h)
	TLM	Top Land Carbon (demerits)
	TLM	Top Groove Carbon (demerits)
Caterpillar 1P	TLM	WDP (demerits)
		Piston, Ring and Liner Scuffing (yes or no)
	(note 5)	Piston Ring Sticking (yes or no)
	TLM (note 4)	Oil Consumption (g/kWh)
	TLM	Top Land Heavy Carbon (%)
	TLM	Top Groove Fill (%)
Caterpillar 1N	TLM	WDN (demerits)
	,	
· · · · · · · · · · · · · · · · · · ·	(note 7)	Piston, Ring and Liner Scuffing (yes or no)
(note 5)	(note 4)	Piston Ring Sticking (yes or no)
1MPC	MTAC	Top Groove Fill (%)
Caterpillar	MTAC (note 6)	WTD (demerits)
	(note 5)	Piston, Ring and Liner Scuffing (yes or no)
	(note 4)	Piston Ring Sticking (yes or no)
	TLM	Avg. Oil Consumption (g/kW·h)
	TLM	Top Land Heavy Carbon (%)
Caterpinal TK	TLM	Top Groove Fill (%)
Caterpillar 1K	TLM	WDK (demerits)
Sequence IX	MTAC	Average Number of Preignitions
Sequence VIII	MTAC	Bearing weight loss (mg)
sequence vir	MTAC MTAC	FEI 2 (%) FEI SUM
Sequence VIF	MTAC	
-	MTAC	FEI 2 (%) FEI SUM

Page 7

<u> </u>			
Cummins ISM	MRS	Cummins ISM Merits	
	(note 8)	Crosshead Weight Loss (mg) Injector	
		Screw Wear (mg)	
		Oil Filter Pressure Delta (kPa)	
		Sludge (merits)	
	TLM	Top Ring Weight Loss (mg)	
Cummins ISB	TLM	Average Camshaft Wear (µm) Average	
	TLM	Tappet Weight Loss (mg)	
Mack T-8	TLM	Viscosity Increase at 3.8% soot (cSt)	
	TLM	Filter Plugging, Differential Pressure (kPa) Oil	
	TLM	Consumption (g/kWh)	
Mack T-8E	TLM	Viscosity Increase at 3.8% soot (cSt)	
	TLM	Relative Viscosity at 4.8% soot (unitless number)	
Mack T-11	TLM	TGA % Soot @ 4.0 cSt increase @ 100° C	
		TGA % Soot @ 12.0 cSt increase @ 100° C	
		TGA % Soot @ 15.0 cSt increase @ 100° C	
Mack T-12	TLM	Liner Wear, µm	
(note 9)		Top Ring Mass Loss, mg	
,		Lead Content at EOT, mg/kg	
Mack T-12	MRS	Cylinder Liner Wear, µm	
(note 10)		Top Ring Mass Loss, mg	
		Delta Pb @ EOT, mg/kg	
		Delta Pb 250 to 300 hours, mg/kh	
		Oil Consumption, g/hr	
Mack T-12	MTAC	Top Ring Mass Loss,	
(note 11)	(note 12)	mg Cylinder Liner	
,		Wear, µm	
Volvo T-13	TLM	IR Peak at EOT, Abs., cm ⁻¹	
		Kinematic Viscosity Increase at 40°C, %	
COAT	MTAC	Average Aeration, 40h to 50h, %	
	(note 12)		

Notes:

- 13) Units for parameters in italics are transformed. See next section for specific transformations.
- 14) The majority of retained tests must not have ring sticking (hotstuck).
- 15) The majority of retained tests must not have compression ring sticking (hot stuck).
- 16) None of the retained tests may have piston ring sticking.
- 17) If three or more operationally valid tests have been run, the majority of these tests must not have scuffing. Any scuffed tests are considered non-interpretable, and no data from these tests are to be used in MTEP calculations.
- 18) Two methods of calculating WTD are used, one for API Category CF and a different one for API Category CF-2. Both methods use MTAC for handling testresults.
- 19) None of the retained tests may have piston, ring or linerscuffing.
- 20) The parameters used in calculating the Merit Rating value are shown.

- 21) This TLM applies to Mack T-12 used in API Category CH-4.
- 22) This MRS applies to Mack T-12 used in API Category CI-4 and CJ-4.
- 23) This MTAC applies to Mack T-12 used in API Category CK-4 and FA-4.
- 24) The MTAC provision to discard any valid test result is not applicable (See Appendix F, pg. F-3, Three or More Tests, Number 2).

List of Transformations of Rated Parameters

Test	Parameter	Transformation
Sequence IIIF	Viscosity, % Increase	1/square root of the % increase at 80 hours
Sequence IIIFHD	Viscosity, % Increase	LN (PVISH060)
Sequence IIIG	Viscosity, % Increase Avg. cam plus lifter wear	LN (PVISH100) LN (ACLW)
Sequence VG	Oil Screen Clogging	LN (oil screen clogging +1)
Sequence IX	Average Number of Preignitions	Square root (AVPIE + 0.5)
Caterpillar 1K	Top Land Heavy Carbon	LN (TLHC + 1)
Caterpillar 1N	Top Land Heavy Carbon	LN (TLHC + 1)
Caterpillar 1P	Average Oil Consumption Final Oil Consumption	LN (AOC) LN (FOC)
Caterpillar C13	Delta Oil Consumption (g/h) Second Ring Top Carbon	Square root (Delta OC) LN(R2TC)
Mack T-12	Delta Pb @ EOT Delta Pb 250 to 300 hours Oil Consumption	LN (DPbEOT) LN (DPb250300) LN (OC)
Cummins ISM	Oil Filter Pressure Delta	LN (OFDP)
Volvo T-13	Kinematic Viscosity Increase at 40°C	Square root (KV40)
Sequence IIIH	Kinematic Viscosity (% increase at 400 C)	LN (PVIS)
Sequence IIIHA	MRV Viscosity (%)	LN(MRV)

The Code is available online at http://www.americanchemistry.com/paptg. Comments to this Code Bulletin (C-58) should be sent to the PAPTG Manager W.D. (Doug) Anderson prior to December 3, 2017.

