

CODE BULLETIN C-54

American Chemistry Council Product Approval Code of Practice December 2010 Edition

То:	Practitioners of the American Chemistry Council Product Approval Code of Practice Interested Parties
Original	
Issue date:	September 21, 2017
Effective	
Date:	October 20, 2017
Re:	Appendix F Revision- Defining MTEP for the Sequence IIIH, Sequence IIIHA, Sequence IIIHB, Sequence VIE, Sequence VIF Product Approval Code of Practice – December 2010 Edition

The American Chemistry Council's (ACC) Product Approval Protocol Task Group (PAPTG) reached consensus to revise Appendix F for the purpose of defining Multiple Test Evaluation Procedures (MTEP) for the Sequence IIIH, Sequence IIIHA, Sequence IIIHB, Sequence VIE, Sequence VIF engine tests. Existing text and proposed edits to Appendix F are provided below.

Existing Text on Page F-4 through F-7

Test	Type of MTEP	Parameter (Units) (note 1)
Sequence IIIF	MTAC MTAC MTAC MTAC (note 2)	Kinematic Viscosity (% increase at 40° C) Avg. piston skirt varnish (merits) Weighted piston deposit (merits) Screened avg. cam plus lifter wear (µm) Hot stuck rings
Sequence IIIFHD	MTAC	Kinematic Viscosity @ 60 h (% increase)

Sequence IIIG	MTAC	Kinematic Viscosity (% increase at $40^{\circ} C$)
1	MTAC	Weighted piston deposit (merits)
	MTAC	Avg. cam plus lifter wear (μm)
	(note 2)	Hot stuck rings
Sequence IIIGA	None	No MTEP, No MTAC
Sequence IIIGB	MTAC	Phosphorus retention (%)
Test	Type of MTEP	Parameter (Units) (note 1)
Sequence IVA	MTAC	Avg. cam wear (μm)
Sequence VG	MTAC	Avg. engine sludge (merits)
•	MTAC	Rocker arm cover sludge (merits)
	MTAC	Avg. piston skirt varnish (merits)
	MTAC	Avg. engine varnish (merits)
	MTAC	Oil screen clogging (%)
	(note 3)	Hot stuck compression rings
Sequence VIB	MTA	FEI 1 (%)
	MTA	FEI 2 (%)
	MTAC	FEI 1 + FEI 2 (%)
Sequence VID	MTA	FEI 2 (%)
	MTA	FEI SUM (%)
	MTA	FEI 1 + FEI 2 (%)
Saguanaa VIII		Descript usight loss (mg)
Sequence VIII	MTAC	Bearing weight loss (mg)
Caterpillar 1K	TLM	WDK (demerits)
	TLM	Top Groove Fill (%)
	TLM	<i>Top Land Heavy Carbon (%)</i>
	TLM	Avg. Oil Consumption (g/kW·h)
	(note 4)	Piston Ring Sticking (yes or no)
	(note 5)	Piston, Ring and Liner Scuffing (yes or no)
Caterpillar	MTAC	WTD (demerits) Top
1MPC	(note 6)	Groove Fill (%)
(note 5)	MTAC	Piston Ring Sticking (yes or no)
	(note 4)	Piston, Ring and Liner Scuffing (yes or no)
	(note 7)	
Caterpillar 1N	TLM	WDN (demerits)
	TLM	Top Groove Fill (%)
	TLM	Top Land Heavy Carbon (%)
	TLM (note 4)	Oil Consumption (g/kWh)
	(note 5)	Piston Ring Sticking (yes or no)
		Piston, Ring and Liner Scuffing (yes or no)

age 3			
Caterpillar 1P			
	TLM	Top Groove Carbon (demerits)	
	TLM	Top Land Carbon (demerits)	
	TLM	Avg. Oil Consumption (0-360h) (g/h) Final	
	TLM (note 5)	Oil Consumption (312-360h) (g/h)	
		Piston, Ring and Liner Scuffing (yes or no)	
Caterpillar 1R	TLM	WDR (demerits)	
	TLM	Top Groove Carbon (demerits)	
	TLM	Top Land Carbon (demerits)	
	TLM	Avg. Initial (0-252 h) Oil Consumption (g/h)	
	TLM (note 5)	Avg. Final (432-504 h) Oil Consumption (g/h)	
		Piston, Ring and Liner Scuffing (yes or no)	
Caterpillar C13	MRS	Caterpillar C13 Merits	
	(note 4)	Delta Oil Consumption (g/h)	
	(note 8)	Average Top Land Carbon (Demerits)	
		Average Top Groove Carbon (Demerits)	
		Second Ring Top Carbon (Demerits)	
	Type of		
Test	MTEP	Parameter (Units) (note 1)	
Cummins ISM	MRS	Cummins ISM Merits	
	(note 8)	Crosshead Weight Loss (mg)	
		Injector Screw Wear (mg)	
		Oil Filter Pressure Delta (kPa)	
		Sludge (merits)	
	TLM	Top Ring Weight Loss (mg)	
Cummins ISB	TLM	Average Camshaft Wear (µm) Average	
	TLM	Tappet Weight Loss (mg)	
Mack T-8	TLM	Viscosity Increase at 3.8% soot (cSt)	
	TLM	Filter Plugging, Differential Pressure (kPa) Oil	
	TLM	Consumption (g/kWh)	
Mack T-8E	TLM	Viscosity Increase at 3.8% soot (cSt)	
	TLM	Relative Viscosity at 4.8% soot (unitless number)	
Mack T-11	TLM	TGA % Soot @ 4.0 cSt increase @ 100° C	
		TGA % Soot @ 12.0 cSt increase @ 100° C	
		TGA % Soot @ 15.0 cSt increase @ 100° C	
Mack T-12	TLM	Liner Wear, µm	
(note 9)		Top Ring Mass Loss, mg	
		Lead Content at EOT, mg/kg	
Mack T-	MRS	Cylinder Liner Wear, µm	
12 (note		Top Ring Mass Loss, mg	
10)		Delta Lead, Final, mg/kg	
Mack T-	MTAC	Top Ring Mass Loss, mg	
12 (note	(note 12)	Cylinder Liner Wear, µm	
11)			

i aye i		
Volvo T-13	TLM	IR Peak at EOT, Abs., cm ⁻¹ Kinematic Viscosity Increase at 40°C, %
COAT	MTAC (note 12)	Average Aeration, 40h to 50h, %

Notes:

- 1) Units for parameters in italics are transformed. See next section for specific transformations.
- 2) The majority of retained tests must not have ring sticking (hot stuck).
- 3) The majority of retained tests must not have compression ring sticking (hot stuck).
- 4) None of the retained tests may have piston ringsticking.
- 5) If three or more operationally valid tests have been run, the majority of these tests must not have scuffing. Any scuffed tests are considered non-interpretable, and no data from these tests are to be used in MTEP calculations.
- 6) Two methods of calculating WTD are used, one for API Category CF and a different one for API Category CF-2. Both methods use MTAC for handling testresults.
- 7) None of the retained tests may have piston, ring or liner scuffing.
- 8) The parameters used in calculating the Merit Rating value are shown.
- 9) This TLM applies to Mack T-12 used in API Category CH-4.
- 10) This MRS applies to Mack T-12 used in API Category CI-4 and CJ-4.
- 11) This MTAC applies to Mack T-12 used in API Category CK-4 and FA-4.
- 12) The MTAC provision to discard any valid test result is not applicable (See Appendix F, pg. F-3, Three or More Tests, Number 2).

Test	Parameter	Transformation
Sequence IIIF	Viscosity, % Increase	1/square root of the % increase at 80 hours
Sequence IIIFHD	Viscosity, % Increase	LN (PVISH060)
Sequence IIIG	Viscosity, % Increase	LN (PVISH100)
	Avg. cam plus lifter wear	LN (ACLW)
Sequence VG	Oil Screen Clogging	LN (oil screen
		clogging +1)
Caterpillar 1K	Top Land Heavy Carbon	LN(TLHC+1)
Caterpillar 1N	Top Land Heavy Carbon	LN(TLHC+1)
Caterpillar 1P	Average Oil Consumption	LN (AOC)
	Final Oil Consumption	LN (FOC)
Caterpillar C13	Delta Oil Consumption (g/h)	Square root (Delta OC)
•	Second Ring Top Carbon	LN(R2TC)
Mack T-12	Delta Pb @ EOT	LN (DPbEOT)
	Delta Pb 250 to 300 hours	LN (DPb250300)
	Oil Consumption	LN (OC)
Cummins ISM	Oil Filter Pressure Delta	LN (OFDP)

List of Transformations of Rated Parameters

Volvo T-13	Kinematic Viscosity Increase at	Square root (KV40)
	40°C	

Proposed Text on Page F-6 through F-7

	Type of		
Test	MTEP	Parameter (Units) (note 1)	
Sequence IIIF	MTAC	Kinematic Viscosity (% increase at $40^{\circ} C$)	
	MTAC	Avg. piston skirt varnish (merits)	
	MTAC	Weighted piston deposit (merits)	
	MTAC	Screened avg. cam plus lifter wear (µm)	
	(note 2)	Hot stuck rings	
Sequence IIIFHD	MTAC		
		Kinematic Viscosity @ 60 h (% increase)	
Sequence IIIG	MTAC	Kinematic Viscosity (% increase at 40°C)	
	MTAC	Weighted piston deposit (merits)	
	MTAC	Avg. cam plus lifter wear (μm)	
	(note 2)	Hot stuck rings	
Sequence IIIGA	None	No MTEP, No MTAC	
Sequence IIIGB	MTAC	Phosphorus retention (%)	
Sequence IIIH	MTAC	Kinematic Viscosity (% increase at $40^{\circ} C$)	
	MTAC	Weighted piston deposit (merits)	
<u> </u>	Type of		
Test	MTEP	Parameter (Units) (note 1)	
Sequence IIIHA	MTAC	MRV Viscosity (%)	
Sequence IIIHB	MTAC	Phosphorus retention (%)	
Sequence IVA	MTAC	Avg. cam wear (µm)	
Sequence VG	MTAC	Avg. engine sludge (merits)	
	MTAC	Rocker arm cover sludge (merits)	
	MTAC	Avg. piston skirt varnish (merits)	
	MTAC	Avg. engine varnish (merits)	
	MTAC	Oil screen clogging (%)	
	(note 3)	Hot stuck compression rings	
Sequence VIB	MTAC-	FEI 1 (%)	
	MTAC	FEI 2 (%)	
	MTAC	FEI 1 + FEI 2 (%)	
Sequence VID	MTAC	FEI 2 (%)	
	MTAC	FEI SUM	
	MTAC	(%)	
		FEI 1 + FEI 2 (%)	

Page 6			
Sequence VIE	MTAC	FEI 2 (%)	
	MTAC	FEI SUM	
Sequence VIF	MTAC	FEI 2 (%)	
0 100	MTAC	FEI SUM	
Sequence VIII	MTAC	Bearing weight loss (mg)	
Caterpillar 1K	TLM	WDK (demerits) Top	
	TLM	Groove Fill (%)	
	TLM	Top Land Heavy Carbon (%)	
	TLM	Avg. Oil Consumption (g/kW·h)	
	(note 4)	Piston Ring Sticking (yes or no)	
	(note 5)	Piston, Ring and Liner Scuffing (yes or no)	
Caterpillar	MTAC (note	WTD (demerits) Top	
1MPC	6)	Groove Fill (%)	
(note 5)	MTAC	Piston Ring Sticking (yes or no)	
	(note 4)	Piston, Ring and Liner Scuffing (yes or no)	
	(note 7)		
Caterpillar 1N	TLM	WDN (demerits) Top	
	TLM	Groove Fill (%)	
	TLM	Top Land Heavy Carbon (%)	
	TLM (note 4)	Oil Consumption (g/kWh)	
	(note 5)	Piston Ring Sticking (yes or no)	
		Piston, Ring and Liner Scuffing (yes or no)	
Caterpillar 1P	TLM	WDP (demerits)	
	TLM	Top Groove Carbon (demerits)	
	TLM	Top Land Carbon (demerits)	
	TLM	Avg. Oil Consumption (0-360h) (g/h)	
	TLM (note 5)	Final Oil Consumption (312-360h) (g/h)	
		Piston, Ring and Liner Scuffing (yes or no)	
Caterpillar 1R	TLM	WDR (demerits)	
•	TLM	Top Groove Carbon (demerits)	
	TLM	Top Land Carbon (demerits)	
	TLM	Avg. Initial (0-252 h) Oil Consumption (g/h)	
	TLM (note 5)	Avg. Final (432-504 h) Oil Consumption (g/h)	
		Piston, Ring and Liner Scuffing (yes or no)	
Caterpillar C13	MRS	Caterpillar C13 Merits	
	(note 4)	Delta Oil Consumption (g/h)	
	(note 8)	Average Top Land Carbon (Demerits)	
		Average Top Groove Carbon (Demerits)	
		Second Ring Top Carbon (Demerits)	
	Type of		
Test	MTEP	Parameter (Units) (note 1)	
1031			

MRS	Cummins ISM Merits	
(note 8)	Crosshead Weight Loss (mg) Injector	
	Screw Wear (mg)	
	Oil Filter Pressure Delta (kPa)	
	Sludge (merits)	
TLM	Top Ring Weight Loss (mg)	
TLM	Average Camshaft Wear (µm) Average	
TLM	Tappet Weight Loss (mg)	
TLM	Viscosity Increase at 3.8% soot (cSt)	
TLM	Filter Plugging, Differential Pressure (kPa) Oil	
TLM	Consumption (g/kWh)	
TLM	Viscosity Increase at 3.8% soot (cSt)	
TLM	Relative Viscosity at 4.8% soot (unitless number)	
TLM	TGA % Soot @ 4.0 cSt increase @ 100° C	
	TGA % Soot @ 12.0 cSt increase @ 100° C	
	TGA % Soot @ 15.0 cSt increase @ 100° C	
TLM	Liner Wear, µm	
	Top Ring Mass Loss, mg	
	Lead Content at EOT, mg/kg	
MRS	Cylinder Liner Wear, µm	
	Top Ring Mass Loss, mg	
	Delta Lead, Final, mg/kg	
	Delta Pb @ EOT, mg/kg	
	Delta Pb 250 to 300 hours, mg/kh	
	Oil Consumption, g/hr	
MTAC	Top Ring Mass Loss, mg	
(note 12)	Cylinder Liner Wear, µm	
TLM	IR Peak at EOT, Abs., cm ⁻¹	
	Kinematic Viscosity Increase at 40°C, %	
MTAC (note 12)	Average Aeration, 40h to 50h, %	
	(note 8) TLM TLM TLM TLM TLM TLM TLM TLM	

Notes:

- 1) Units for parameters in italics are transformed. See next section for specific transformations.
- 2) The majority of retained tests must not have ring sticking (hotstuck).
- 3) The majority of retained tests must not have compression ring sticking (hot stuck).
- 4) None of the retained tests may have piston ring sticking.
- 5) If three or more operationally valid tests have been run, the majority of these tests must not have scuffing. Any scuffed tests are considered non-interpretable, and no data from these tests are to be used in MTEP calculations.
- 6) Two methods of calculating WTD are used, one for API Category CF and a different one for API Category CF-2. Both methods use MTAC for handling testresults.
- 7) None of the retained tests may have piston, ring or liner scuffing.
- 8) The parameters used in calculating the Merit Rating value are shown.

- 9) This TLM applies to Mack T-12 used in API Category CH-4.
- 10) This MRS applies to Mack T-12 used in API Category CI-4 and CJ-4.
- 11) This MTAC applies to Mack T-12 used in API Category CK-4 and FA-4.
- 12) The MTAC provision to discard any valid test result is not applicable (See Appendix F, pg. F-3, Three or More Tests, Number 2).

Test	Parameter	Transformation
Sequence IIIF	Viscosity, % Increase	1/square root of the % increase at 80 hours
Sequence IIIFHD	Viscosity, % Increase	LN (PVISH060)
Sequence IIIG	Viscosity, % Increase Avg. cam plus lifter wear	LN (PVISH100) LN (ACLW)
Sequence VG	Oil Screen Clogging	LN (oil screen clogging +1)
Caterpillar 1K	Top Land Heavy Carbon	LN(TLHC + 1)
Caterpillar 1N	Top Land Heavy Carbon	LN(TLHC + 1)
Caterpillar 1P	Average Oil Consumption Final Oil Consumption	LN (AOC) LN (FOC)
Caterpillar C13	Delta Oil Consumption (g/h) Second Ring Top Carbon	Square root (Delta OC) LN(R2TC)
Mack T-12	Delta Pb @ EOT Delta Pb 250 to 300 hours Oil Consumption	LN (DPbEOT) LN (DPb250300) LN (OC)
Cummins ISM	Oil Filter Pressure Delta	LN (OFDP)
Volvo T-13	Kinematic Viscosity Increase at 40°C	Square root (KV40)
Sequence IIIH	Kinematic Viscosity (% increase at 400 C)	LN (PVIS)
Sequence IIIHA	MRV Viscosity (%)	LN(MRV)

List of Transformations of Rated Parameters

The Code is available online at <u>http://www.americanchemistry.com/paptg</u>. Comments to this Code Bulletin (C-54) should be sent to the PAPTG Manager <u>W.D. (Doug) Anderson</u> prior to October 20, 2017.