A GUIDE FOR THE PRIMARY CARE PHYSICIAN IN EVALUATING DIISOCYANATE EXPOSED WORKERS FOR OCCUPATIONAL ASTHMA

David I. Bernstein M.D. Professor of Medicine and Environmental Health Division of Immunology and Allergy Department of Internal Medicine University of Cincinnati College of Medicine Cincinnati Ohio, USA

Copyright International Isocyanate Institute Inc. 2017

Disclaimer: This report is on research sponsored by the International Isocyanate Institute, Inc. The information, analysis, methods and recommendations herein are presented in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may be encountered.

Although presented in good faith, no representation, guarantee or warranty is made as to the accuracy, reliability or completeness of this report, or that the application or use of any of the information, analysis, methods and recommendations herein will avoid, reduce or ameliorate hazards, accidents, losses, damages or injury of any kind to persons or property. Readers are therefore cautioned to satisfy themselves as to the applicability and suitability of said information, analysis, methods and recommendations for the purposes intended prior to use.

Invitation to Participate in the Diisocyanate Registry

Health care providers currently evaluating workers exposed to diisocyanate chemicals for possible Occupational Asthma: are invited to participate in a surveillance project for diisocyanate-exposed workers, who are presenting with asthma symptoms. The project will include hands on training for using *The Guide for the Primary Care Physician in evaluating Diisocyanate Exposed Workers*.

This guidance for evaluating diisocyanate-exposed workers presenting with lower respiratory symptoms was designed to assist the primary care physician to diagnose diisocyanate-induced occupational asthma. By participating, you will learn how to accurately assess respiratory complaints and choose appropriate treatment interventions to manage work-related asthma. You will also be able to download fillable forms for taking a history and recording pulmonary function data.

Who is eligible to participate? Physicians responsible for evaluating and managing diisocyanate-exposed workers presenting with work-associated respiratory symptoms.

What is involved? The program will begin with a live web training session conducted by a group of medical experts. During the online session, each participant will be instructed on the step-by-step diagnostic approach for the evaluation of work related asthma described in the *Guide*, as well as possible treatment interventions. The program participants will then be able to directly evaluate diisocyanate-exposed symptomatic worker while still at work.

If you choose to participate, you will learn how to:

- 1. Use the *Guide* to evaluate and diagnose workers who are suspected of Diisocyanate Asthma while still at work.
- 2. Report de-identified clinical data on one diisocyanate-exposed worker undergoing *Guide*-directed evaluation using a HIPPA¹ compliant web-based data collection system.
- 3. Evaluate clinical outcomes of workers diagnosed with work-related asthma after implementing specific *Guide*-directed treatment interventions.

Project Team David I. Bernstein MD Allergy and Asthma Specialist University of Cincinnati College of Medicine

Gary M. Liss MD, MS Occupational Physician University of Toronto

Cheryl K. Bernstein RNTo Enroll:Research CoordinatorContact Cheryl at email: CherylKB@bernsteincrc.comBernstein Clinical Research Centeror phone: (001) 513-666-1554

¹ HIPPA: US Health Insurance Portability and Accountability Act of 1996

Introduction

Occupational asthma (OA) is a disease characterized by variable airway obstruction due to causes or conditions attributable to a particular occupational environment. Work exposures may account for 16% of all new cases of adult onset asthma (Bernstein et al., 2013; Tarlo, 2014). The diisocyanates, an essential group of reactive compounds (see **Table 2**), are widely used for a variety of applications in many industries and are known respiratory sensitizers and exposure to these chemicals has been a common cause of occupational asthma (Meyer et al., 1999). In spite of increasing use, an overall decrease in the total number of cases of diisocyanate-related occupational asthma (DA) has been reported over the past 10 years. Several explanations have been offered including medical surveillance, product stewardship efforts to minimize exposures via increased ventilation and use of personal protective equipment (Buyantseva et al., 2011). This Guide can assist in accurately diagnosing occupational asthma related to diisocyanates and documenting actual cases.

Much has been learned about clinical characteristics of DA. Asthmatic symptoms begin after variable durations of exposure ranging from weeks to years. Clinical asthma is most likely to improve or even be cured in workers diagnosed early after symptoms begin, provided they are restricted from further exposure to diisocyanates (Bernstein et al., 1993; Tarlo and Liss, 2002). If the diagnosis and appropriate intervention (*i.e.* cessation of diisocyanate exposure) is delayed, chronic asthma can persist for many years after leaving work. Thus, the key to prevention of impairment and disability due to DA is early identification of new cases.

To achieve this goal, the following Guide has been designed to assist the primary care physician in diagnosing DA. Because this protocol relies on the serial measurement of lung function during active exposure to diisocyanates, this approach is applicable only for workers who can remain at work during the evaluation (Tarlo et al., 2008). It should not be used for those who have already left the workplace. If possible, measurement of personal diisocyanate exposure should be performed concurrent with evaluation of the worker using reliable analytical methods. This could allow comparison of days when there is documented diisocyanate exposure with work-related symptoms and changes in lung function.

Table of Contents

Invitation to Participate in the Diisocyanate Registry
Introduction
Purpose
Background
Causes of Lower Respiratory Symptoms
Definitions of Work-Related Asthma
Objectives of this Guide
Diagnostic Algorithm
Step 1: Obtain a Medical and Occupational History of Work-related asthma 10
Step 2: Spirometry testing- Confirm the presence of asthma
Step 3: Workplace Monitoring by Serial Monitoring of Lung Function (Tarlo et al., 2008) 11
Step 4: Methacholine Testing (Pralong et al., 2016)
Step 5: Diagnosis and Intervention
APPENDIX I: MEDICAL SURVEY FORM 17
APPENDIX II
APPENDIX III
References

Purpose

The main goal of this Guide is to provide clinical guidance for the physician asked to evaluate a worker exposed to diisocyanate chemicals who is reporting lower respiratory symptoms at work. In such a scenario, occupational asthma (OA) due to respiratory sensitization to diisocyanates (diisocyanate-related asthma or DA) is one of several potential causes of work-related lower respiratory symptoms. A medical history of workrelated lower respiratory symptoms of cough, dyspnea, chest tightness and/or wheezing alone has insufficient specificity for establishing a diagnosis of OA (Tarlo et al., 2008). Ideally, the diagnosis of DA should be confirmed objectively by demonstrating reduced lung function associated with diisocyanate exposure at work and improvement away from The main objective of this document, therefore, is to serve as resource to the work. physician in identifying those workers with a probable diagnosis of DA by using accessible clinical tools. The involvement of the non-specialist in this process will enable early identification of DA, a potentially serious asthmatic condition. If DA is recognized early in its course, prompt cessation of exposure to diisocyanates is effective in reducing and preventing future work-related asthma symptoms.

This Guide for evaluating workers suspected of DA has been designed for those situations in which consultation with a medical specialist experienced in the evaluation of occupational lung disorders is not possible. Adherence to the steps detailed in this stepwise algorithm will greatly increase the likelihood of an accurate diagnosis. The ability to adhere strictly to this protocol may depend on available resources for performing lung function testing both at work and home. Deviation from this protocol could result in an erroneous diagnosis.

If the following Guide is unsuccessful in establishing or excluding DA via monitoring of lung function in the workplace, controlled specific inhalation challenge (SIC) testing (if available) with diisocyanates can be considered on a case by case basis. Although not available in many countries, SIC protocols are well described and conducted routinely and safely in specialized clinics under the supervision of experienced physician specialists (Tarlo, 2015). Briefly, ambient diisocyanates are generated in a chamber where chemical levels can be controlled and monitored. After obtaining informed consent, the worker is briefly exposed by inhalation to sub-irritant doses of diisocyanate and FEV₁ (forced expiratory volume in 1 second) is monitored for up to 24 hours. A decrease in FEV₁ of \geq 20% from pre-challenge baseline, not observed on a separate placebo challenge day, confirms the diagnosis of DA.

Background

Causes of Lower Respiratory Symptoms

Accurate diagnosis of DA is greatly facilitated by the understanding that, in addition to asthma, there are several causes of work-related as well non work-related lower respiratory symptoms that need to be considered. In evaluating the worker suspected of DA, one must also be aware of a variety of potential other causes of work-related lower respiratory symptoms that may not be

attributable to asthma. Cough and lower respiratory symptoms are commonly triggered by nonspecific irritants at work in: current smokers; persons with chronic obstructive pulmonary disease (COPD); and workers with preexisting allergy to seasonal pollens or indoor inhalant aeroallergens (*e.g.* animal proteins, house dust mite). Workers with seasonal allergic rhinitis, for example, often have "twitchy" or hyperreactive airways during peak pollen seasons and, during those times, are more likely to develop lower respiratory symptoms (cough or wheezing) triggered by nonspecific workplace irritants or physical factors (*e.g.* cold air, nuisance dust, fumes, etc.). Chronic post-nasal drainage caused by upper respiratory disorders such as allergic or non-allergic rhinitis is the most common source of chronic cough. Finally, any patient with chronic unexplained lower respiratory symptoms should also receive a medical evaluation and chest imaging procedures to exclude underlying cardiopulmonary disorders (*e.g.* cardiac failure, lung tumor).

Definitions of Work-Related Asthma

When using this Guide, it is useful to be familiar with the following definitions of various work-related asthma conditions (Bernstein et al., 2006):

Work-related asthma is a general non-specific term used to describe asthmatic symptoms identified to increase during or after work exposure, that usually improve after leaving. Work-related asthma encompasses: 1) pre-existing asthma conditions exacerbated at work, referred to as Work-aggravated Asthma or WAA and; 2) *de novo* Occupational Asthma caused by ambient exposures unique to the work environment such as chemical respiratory sensitizers (diisocyanates as well as other chemicals) or high levels of respiratory irritants, which can result in Irritant Induced Occupational Asthma (also referred to as the Reactive Airways Dysfunction Syndrome or RADS). Diagnostic criteria for RADS include: 1) acute high level exposure to a respiratory irritant; 2) onset of lower respiratory symptoms within 24 hours after irritant exposure; and 3) a positive methacholine test demonstrating airway hyperresponsiveness (Brooks et al., 1985). This classification scheme is illustrated in Figure 1.

Figure 1. Classification scheme of work-related asthma

Work-aggravated asthma (WAA) is worsening of preexisting asthma due to workplace triggers such as a nonspecific irritant (environmental tobacco smoke, chemical irritants, etc.) or physical stimulus (*e.g.* exercise or cold air). WAA can be manifested by increase in frequency or severity of asthma symptoms or reduced control of asthmatic symptoms while at work, often requiring increase in use of rescue bronchodilators (*e.g.* inhaled albuterol) (Tarlo et al., 2008). Common clinical examples are patients with longstanding allergic asthma caused by seasonal outdoor pollen exposure whose asthma symptoms are coincidentally triggered at work by exertion or exposure to workplace irritants. WAA can often be prevented by avoiding workplace triggers or adjusting asthma medications, and may not require relocation or a job change.

Occupational asthma can be defined as asthma caused by some exposure unique to the workplace (Bernstein et al., 2006). This broad definition encompasses: 1) **OA caused by** *respiratory sensitization* to a workplace allergen (*e.g.* natural rubber latex) or chemical (methylene diphenyl diisocyanate or MDI) characterized by a preceding asymptomatic period of exposure (*i.e.* latency period) for months or years prior to onset of asthma at work; and 2) *Irritant induced asthma* (also referred to as the Reactive Airways Dysfunction Syndrome or RADS) in which OA is caused by single or multiple inhalational exposures to high levels of respiratory irritants. Either category of OA is almost always recognized in workers with no pre-existing history of asthma. Thus, it is essential for the evaluating physician to differentiate OA from WAA, which, as described, is recognized primarily in workers with pre-existing asthma conditions whose asthma symptoms are triggered at work.

Evaluation of a diisocyanate exposed worker with work-associated respiratory symptoms is particularly challenging because diisocyanates can be associated with a variety of work-related respiratory syndromes including: 1) Diisocyanate-induced occupational asthma (DA); 2) sudden

onset irritant induced asthma (RADS); 3) irritant cough symptoms without asthma; and 4) WAA. Distinguishing features of various forms of diisocyanate WRA are presented in **Table 1**.

Term	Definition	Diisocyanate Exposure Scenarios	Clinical Features
Diisocyanate-induced occupational asthma (DA)	Asthma triggered by exposure to sub-irritant levels of diisocyanate; onset is preceded by asymptomatic period of exposure (months to years)	Induction of respiratory sensitization often requires repeated short term exposures above the OEL* but can be induced after a single high-level diisocyanate exposure. Dermal exposure may contribute to development of sensitization to diisocyanates.	Probable immune basis, not necessarily IgE- related, onset after repeated exposures
Irritant- induced occupational asthma or RADS	Sudden Onset asthma	Single high level (often accidental) exposure to diisocyanates	Immediate onset (see definition of RADS in text).
Irritant-induced Lower Respiratory (non- asthmatic) symptoms	Non-asthmatic symptoms especially cough triggered by irritants encountered at work	Diisocyanates and other chemicals at work are irritants and can trigger cough symptoms	Cough symptoms, often in smokers, are triggered at work. Asthma is excluded by negative methacholine test and absence of reversibility in lung function.
Work-aggravated asthma (WAA)	Worsening of previously diagnosed asthma or bronchial hyperresponsiveness	"Non-massive" non- isocyanate exposure (<i>e.g.</i> cold, exercise, non- sensitizing dust, chemical fumes, or sprays that generally would irritate susceptible populations)	Elicitation of transient asthma symptoms by a variety of non-specific triggers at work including dust, smells, vapors fumes, cold, exercise

Table 1. Types of diisocyanate work-related asthma

* Occupational Exposure Limit

Objectives of this Guide

Occupational asthma may account for 2-15% of all new cases of adult-onset asthma (Bernstein et al., 2006). The diisocyanates, an essential group of reactive compounds (see **Table 2**) widely used for a variety of applications in many industries, is a relatively common cause of occupational asthma (Klees and Ott, 1999). The aim or intent of this Guide is to provide direction to primary care physicians who are asked to perform the initial evaluation of workers with suspected occupational asthma caused by exposure to diisocyanate chemicals. **This stepwise approach to the evaluation of work-related asthma can be applied only to those symptomatic workers who are able to remain at work long enough for the lung function monitoring evaluation (described below) to be completed. This Guide does not apply to the worker no longer at work and not actively exposed to diisocyanates who may require consultation with a specialist experienced in the evaluation of occupational lung disorders. Where available, such an evaluation might include a specific inhalation test at a specialized center to the diisocyanate chemical encountered at work. This diagnostic Guide has been designed for those situations in which such consultants are not available.**

Chemical	Industries or applications
Toluene diisocyanate (TDI)	flexible foam, coatings, elastomers
Diphenylmethane Diisocyanate (MDI)	flexible and rigid foam, binder in foundries and forest product composites, adhesives, elastomers
Hexamethylene diisocyanate (HDI)	hardeners for spray paint, coatings
Naphthylene diisocyanate (NDI)	rubber manufacturing, elastomers
Prepolymers (diisocyanates partially reacted with polyols)	elastomers, one component coatings

Table 2.	Diisocyanate	chemicals an	d common	applications	in	industry	1
----------	--------------	--------------	----------	--------------	----	----------	---

This Guide may help identify workers with OA (caused by the workplace) as well as those with non-occupational asthma (possibly aggravated at work, *i.e.* WAA). In essence, this Guide describes a workplace monitoring test. Adherence to the steps detailed below will increase the likelihood of an accurate diagnosis. The ability to adhere strictly to this protocol may depend on medical supervisory staff available for oversight of lung function testing (such as instructions on the correct performance of peak flow maneuvers) in the work setting. However, it should be emphasized that omissions of key evaluation steps in this protocol could result in erroneous conclusions.

A limitation of this workplace monitoring approach is that, although it can be very useful in demonstrating work-related asthma; it does not definitively prove causation by diisocyanates vs. other substances encountered in the work environment. An expert assessment by an industrial hygienist can help identify the relevant causative exposure and assist in differentiating between occupational and work aggravated asthma (de Olim et al., 2015).

This Guide does not recommend immune testing because specific IgE antibodies for diisocyanate –human serum albumin (HSA) conjugated test antigens are not sensitive enough to be a diagnostic or a screening tool for identifying workers with diisocyanate related OA. Specific IgE was found in less than half of clinically confirmed cases diisocyanate related OA (Tee et al., 1998). The role of specific IgG is also unclear. Several studies have found that specific IgG responses to diisocyanate –human serum albumin (HSA) conjugates are also generally associated with exposure and not disease (Lushniak et al., 1998). In conclusion, immunologic testing does not replace physiologic methods for the diagnosis of Diisocyanate Asthma (Tarlo et al., 2008). Consequently, it is not routinely recommended for investigating workers with possible diisocyanate-related asthma.

Diagnostic Algorithm

This Guide for evaluating and confirming diisocyanate-related asthma is presented as a stepwise diagnostic algorithm in **Figures 3 and 4.** The annotations explaining the steps in the figures are described in detail below:

Step 1: Obtain a Medical and Occupational History of Work-related asthma

Although a history consistent with occupational asthma alone is not enough to confirm and establish a diagnosis of occupational asthma, it is an essential first step. An occupational respiratory questionnaire is provided in *Appendix I*, which can be used by the physician to capture relevant information pertaining to work-related asthmatic symptoms. Any worker who is employed in a facility where a diisocyanate is being used and reports reporting cough, shortness of breath, wheezing or chest tightness during or after the work shift should undergo further testing as outlined in the following steps.

The physician obtaining the occupational history should be aware of the following different patterns of work-related asthmatic reactions following sensitization that can be elicited by subirritant levels of ambient diisocyanate exposure: 1) early onset of asthmatic symptoms that begin within 1-2 hours after arriving at work that may last for 3-4 hours or may persist through the entire duration of the work shift; 2) late onset asthmatic symptoms that begin 4-12 hours after beginning the work shift (Note: occasionally respiratory symptoms are noticed to begin after leaving work). These patterns of asthmatic reactions have been demonstrated after controlled inhalation challenge with diisocyanates (Perrin et al., 1991). As with common outdoor and indoor aeroallergens such as molds, pollens and house dust mite, respiratory exposure to occupational sensitizers may cause early, late, and dual (immediate and late) responses. Low molecular weight chemical occupational sensitizers are unique by virtue of their ability to cause isolated late responses without immediate asthmatic responses. This should be considered when assessing the temporal history between work exposure and development of respiratory symptoms in symptomatic diisocyanate exposed workers (Perrin et al., 1991). Using this knowledge, the examining doctor should be aware that some workers with occupational asthma might report that lower respiratory symptoms begin at work whereas others might not experience symptoms until many hours at work or even after completion of the workshift. Although unusual, asthmatic symptoms associated with late onset asthma can persist for days or even weeks away from work following a single diisocyanate exposure. However, most workers with occupational asthma report symptomatic improvement on the weekend or vacation.

Step 2: Spirometry testing- Confirm the presence of asthma

Before assessing a symptomatic worker for work-related asthma, it is essential to first demonstrate that the worker has asthma defined as reversible variable airway obstruction. Ideally, during a period when the worker is experiencing asthmatic symptoms, simple spirometry testing should be performed before and after 2-4 inhalations of a short acting β_2 -agonist (SABA; e.g. albuterol) delivered by a metered dose inhaler or nebulizer device. It is important to instruct patients to withhold short acting inhaled bronchodilators for at least 4 hours and long acting β_2 agonist bronchodilators (LABA) for at least 12 hours prior to the spirometry test. An increase in FEV₁ of at least 12% after bronchodilator treatment from the pre-treatment baseline FEV₁ establishes reversible airway obstruction, confirming a diagnosis of asthma. Failure to demonstrate reversible airway obstruction on a single test day does not exclude asthma. The test for reversibility in FEV_1 can be repeated on a different day when the patient is actively symptomatic. Regardless of whether there is demonstrable reversibility in FEV₁, all workers reporting lower respiratory symptoms must proceed to Step 3 for serial monitoring of lung function both at and away from work combined with methacholine inhalation testing (Step 4).

Step 3: Workplace Monitoring by Serial Monitoring of Lung Function (Tarlo et al., 2008)

When carefully supervised, serial monitoring of lung function (*i.e.* FEV₁ and/or peak expiratory flow rate [PEFR]) while on the job is considered a **workplace monitoring test**. Because there is potential risk in exposing a worker to a substance capable of triggering acute bronchoconstriction, baseline lung function must be adequate and asthma must be clinically stable for at least 1 week prior to initiating the workplace monitoring testing. Serial monitoring of PEFR at work should be performed only in workers who have a baseline FEV₁ of \geq 70% of predicted. Those workers who report previous severe work-related bronchospastic episodes and/or have an FEV₁ <70% of predicted should be referred to a medical consultant experienced in the evaluation of occupational asthma. Workers with concomitant medical conditions (*e.g.* congestive heart failure) who are medically unstable should not be considered for the workplace monitoring test.

Measurement of intrashift decrements in FEV₁ is an alternative to serial PEFRs for confirming work-related airway obstruction. However, lung function tests (*e.g.* FEV₁) performed before and after the workshift on several days is less sensitive than serial measurement of PEFR performed every 2-4 hours or a minimum of four times daily (Anees, 2003; Anees et al., 2004; Nicholson et al., 2005). An intra-shift or cross-shift decrease on FEV1 of \geq 10% measured during weeks at work (*i.e.* 2-3 times/week) but not during weeks away from work signifies the presence of work-

related airway obstruction. Failure to demonstrated intrashift or cross-shift changes in FEV_1 does not exclude occupational asthma nor does it preclude the need to perform more frequent serial measurements of PEFR.

To obtain quality PEFR data, workers must be properly trained in the use of a portable peak flow rate meter, emphasizing the necessity to obtain a maximal forced expiratory effort. Three efforts are required for each measurement and they must be close to each other; all three efforts should be recorded. Worker instructions and PEFR diaries are provided in *Appendix II* and *Appendix III*. PEFR measurements should be performed by symptomatic workers for 1-2 weeks at work (in a work area where a diisocyanate is being used) and during 1-2 weeks completely removed from exposure. Peak flows rates are to be recorded in diaries every 2-4 hours during waking hours and if awakened. At least 4 daily readings are required (Anees et al., 2004). Once peak flow recordings have been collected, the highest value in each reading (L/min) may be plotted on the Y-axis versus time on the X axis (see Figure 2).

Figure 2. Plot of a PEFR record obtained from a worker with occupational asthma shown as time in days versus the peak expiratory flow rate (L/min) (Nicholson et al., 2005)

Maintenance non-bronchodilator asthma medications including inhaled corticosteroids should not be withdrawn during PEFR monitoring. If deemed safe by the physician, workers should withhold long-acting beta agonist (*e.g.* formoterol) or long-acting anti-muscarinic agents (*e.g.* tiotropium) during this testing period, which can potentially inhibit changes in lung function. Short acting β_2 -agonists (*e.g.* albuterol) bronchodilators should be used for "as needed" rescue treatment for acute asthma symptoms. Lung function records obtained during acute asthma exacerbations or viral infections, which can cause decrements in lung function, should not be included in the PEFR data analysis.

Ideally, two experienced physicians blinded to the medical history of the worker should interpret by visual inspection the PEFR graphs obtained during weeks at and away from the workplace. As shown in **Figure 2**, consistent daily variability (maximum-minimum/maximum PEFR value x 100) in PEFR of \geq 20% compared to measurements obtained on days (or weeks) away from work are characteristic of occupational asthma (Tarlo et al., 2008). The absence of increased daily variability in PEFR of \geq 20% on work days with concurrent isocyanate exposure makes occupational asthma unlikely. Significant decreases in PEFR both during weeks while at work and during weeks away from work are likely attributable to non-occupational asthma or work-aggravated asthma. Rarely, failure to improve away from work can be seen in patients with persistent OA.

Step 4: Methacholine Testing (Pralong et al., 2016)

A methacholine inhalation challenge test defines the presence or absence of "hyperactive airways" or nonspecific bronchial hyperresponsiveness (NSBH). Methacholine (ProvocholineTM) testing is performed routinely in many physicians' offices and in pulmonary function laboratories. Nonspecific bronchial hyperresponsiveness, defined by a positive methacholine test, is a universal feature of persistent asthma with airway inflammation but can also be detected in a variety of non-asthmatic conditions such as chronic bronchitis, congestive heart failure and in atopic individuals and chronic smokers.

The methacholine test is performed by having the patient inhale nebulized saline which is followed by inhalation of incremental doses of methacholine (range of concentrations: 0.125-25 mg/mL) every 5-10 minutes until a 20% decline from the post-saline FEV₁ is observed or until all challenge doses have been delivered without any decrease in the FEV₁. A positive response is defined as a 20% decrease in FEV₁ after inhalation of a provocative concentration (PC₂₀) of \leq 16 mg/mL of methacholine (Cockcroft, 2003).

It is expected that not all physicians using this Guide will have access to methacholine testing. This test is unnecessary in a worker in whom reversible airway obstruction has already been detected in Step 3, unless there is need to validate inconclusive PEFR records.

For the purpose of confirming or excluding occupational asthma, it is essential to perform methacholine testing:

1) During work hours or within 1 hour after leaving the workplace because airway reactivity can normalize within 2-3 hours after leaving work (Durham et al., 1987);

2) After the individual's normal workplace exposure to diisocyanates for at least 2 weeks; and if possible,

3) On the last day of the work week.

A methacholine test is positive if the provocative concentration that elicits a 20% decrease in FEV₁ (PC₂₀) from the saline baseline challenge is \leq 16 mg/mL of methacholine chloride. A positive test will validate abnormal PEFR studies. In addition, normalization of the

methacholine PC_{20} associated with normalization of the PEFR weeks after leaving the workplace further supports a diagnosis of OA (Tarlo et al., 2008). On the other hand, a normal methacholine test ($PC_{20} > 16 \text{ mg/mL}$) would likely exclude occupational asthma and validate normal PEFR studies, or invalidate abnormal PEFR measurements collected by the worker (Pralong et al., 2016). If the methacholine test is normal and the PEFR results abnormal, poor technique or falsification of PEFR data must be suspected. When PEFR results are discordant or inconclusive, referral to a specialist with expertise in evaluation of OA is recommended.

Figure 3. Diagnostic algorithm for occupational asthma associated with diisocyanate exposure

Step 5: Diagnosis and Intervention

As shown in **Figure 3**, Steps 1, 2 and 3 lead to five possible combinations of test results among symptomatic workers. Suggested interventions for diagnoses derived from results of methacholine and PEFR tests are shown in **Figure 4** and are described below:

a. *Normal PEFR studies and a negative methacholine test at work.* Such workers do not have clinical asthma and can continue to work but should be re-evaluated every 6 months for as long as they continue to work with diisocyanates and experience respiratory symptoms.

b. Normal PEFR studies and a positive methacholine test. It is likely that this worker has increased airway responsiveness and no work-related asthma, although he/she could have non-occupational asthma. If such workers are allowed to return to work, monthly spirometry should be conducted by trained personnel before, during and after several work shifts during which diisocyanates are being used in order to confirm absence of work-related asthma. The absence of intrashift decreases in FEV₁ (\geq 15%) likely excludes work-related asthma.

c. Abnormal *PEFR studies and a negative methacholine test*. It is unlikely that the worker has asthma. As already mentioned, poor technique in performance of the PEFR maneuver or poor reporting of PEFR data could account for these anomalous results. Such workers can be cautiously sent back to work. However, careful monthly follow up should be performed with cross-shift and intrashift determinations of FEV_1 every 2-4 hours (see Step 5b) and assessment of asthma symptoms and asthma medications for as long as it is clinically indicated.

d. Abnormal PEFRs that decrease at work and improve away from work combined with a positive methacholine test. These results suggest that the worker has occupational asthma. Such individuals should be restricted completely from future exposure to all diisocyanates. Following cessation of diisocyanate exposure, periodic assessment of FEV₁ and of asthma symptoms, is recommended in order to determine long term treatment requirements and overall improvement in asthma.

e. Abnormal PEFR changes both at work and away from work and a positive This presentation presents a unique clinical challenge. *methacholine test.* Such individuals with continuous asthma may have either non-occupational asthma (that may be aggravated by work; *i.e.* WAA) or chronic occupational asthma. Because, in rare cases, improvement in occupational asthma and lung function may not be determined for months following cessation of exposure to diisocyanates, it is recommended that these workers be totally restricted from exposure to diisocyanates for 6 months. Monthly evaluations for clinical symptoms, asthma medication requirements and FEV_1 are Gradual improvement in lung function and symptoms confirms recommended. occupational asthma and such workers should not be re-introduced to workplaces where exposure to diisocyanates is possible. Failure to show improvement after a prolonged absence from work exposure may be more consistent with non-occupational asthma. However, such a worker should be referred to a physician knowledgeable in occupational lung disease for further evaluation and management.

exposures with asthma symptoms and lung function at work.

APPENDIX I: MEDICAL SURVEY FORM

					(Please Pr	int)							
To	oday's date	e:											
As	ssociate id	entification											
La	st name:		Marital	al status (circle one)									
Single /										/ Mar / Div / Sep / Wid			
Birth date:Height:Weight:Age:Sex:If female, are you pregnant?									gnant?				
	/ /												
He	ome Street	address:				Home phot	ne:		Alte	ernate phone:			
			1			()			()			
$\frac{\mathbf{Et}}{\mathbf{Et}}$	hnic Bacl	kground:	City:					State:		ZIP Code:			
	ropean: _												
A	Asian African												
00	cupation:	Employe	ployer phone:										
			OCCUPA	TIONAL H	ISTORY	CURRENT	COMPA	NY)					
Ha	ave ever y	ou been tran	sferred from	n a job for a	health reas	on? YES	NO						
	If YES, g	give details:											
W	hen did yo	ou start your	current job	? /	/								
W	hat is you	r current job	description	?									
W	hat is you	r usual shift	?										
W pr	hat shift a esently?	re you work	ing										
W	hat is you	r current wo	ork area?										
W	hat percer	t of the time	e are you in	your work a	rea?								
Li	st chemica	als or other s	substances w	hich may be	e used in yo	our work area	during a	typical w	ork w	veek.			
	Substanc	e	How are yo	ou exposed?	(dermal, a	r)	Mon St	th/Year arted		Month/Year Ended			

Please begin with your m	ost recent j	ob and e	nd with your first job, and do not list	current job	.)				
Department	epartment Job Title/Description Dates (Start/St								
		PREVI	OUS EMPLOYMENT HISTOR	RY					
Describe previous jobs	at other pl	aces of	employment.						
Department	Job Title	/Descrip	tion	Dates ((Start/Sto	р) Т	otal Years		
ist chemicals or other	substances	which	you may have been exposed to in	previous i	ohs				
Substance	How we	e vou e	xposed? (dermal. air)	previous j	005.				
		e jou e	iposodi (dormai, an)						
1			MEDICAL INTERVIEW						
lave ever you been trai	nsferred fro	om a joł	for a health reason?	YE	S NO				
If YES, give details:									
While at your current jo	b, have yo	u had:							
Chest Tightness	YES	NO							
Wheezing	YES	NO							
Cough	YES	NO							
Shortness of breath	the follow	NU ing							
II I ES , then allswer	symptoms	hegin <i>i</i>	modiately after starting work (le	ee than 1 h	(0,1)	VE	S NO		
Do these	symptoms	D	o these symptoms begin only after	r starting v	vork?	YE	S NO		
]	lf so, ap	proximately how many hours after	r starting v	work?	1 24			
		How m	any hours do these symptoms last	t while at v	work?				
	Do	these sy	mptoms continue after coming ho	ome from v	work?	YES	S NO		
			If so, for he	ow many h	ours?				
			́H	low many	days?				
			What time of d	ay to they	stop?				
			Are these symptoms bette	r on week	ends?	YES	S NO		
			Are these symptoms bet	ter on vaca	ation?	YES	S NO		
	How ma	ny mon	hs were you on the job before syr	nptoms sta	arted?				
		IMP	RESSION: Are work-related sym	nptoms pre	esent?	YES	S NO		
	Are sy	mptoms	associated with exposure to a sub	stance at v	work?	YES	S NO		
			If yes, what proces	ss or subst	ance?				

SMOKING HIS	STORY											
Do you smok	æ cigarettes?	Now	Former	Never								
If so, ho	If so, how many packs per day?											
How ma												
Do you use e	Do you use e-cigarettes? Now Former Never											
If so, ho	If so, how many milliliters per day?											
For how many years?												
CHRONIC BRONCHITIS												
Do you coug	Do you cough on most days, for at least 3 months out of the year? YES NO											
If YES, I	how many years have you had this cough?											
OTHER RESPI	RATORY											
Have you eve	er been told by a physician you have COPD, emp	ohysema or	chronic bro	nchitis?	YES	NO						
Have you eve	er been diagnosed or treated for asthma by a physical	sician?			YES	NO						
If yes, what	t year were you diagnosed with asthma?											
If yes, what	t medications have you been prescribed for asthn	na?										
	0.001/											
ATOPIC HISTO	JRY		n on foll on .									
Do you have basis?	itchy eyes, runny and congested nose during spr	ing, summe	r or fall on a	a yearly	YES	NO						
If YES.	what year did these symptoms start?											
DISOCYANAT	EXPOSURE											
Have you bee	en present for a MDI or TDI spill?				YES	NO						
If YES,	give details:											
(dates, n	umber of incidents etc.)											
HOBBIES AT I	HOME											
Have you eve	er done urethane spray painting on your car or on	n other meta	l surfaces a	t home?	YES	NO						
If YES, e	explain											
Did you use e	expanding PU foam to seal gaps, windows, doors	s or use it as	s hobby mat	erial?	YES	NO						
If YES, e	explain											
Have you per	sonally used very strong glues or polyurethane-b	based coatin	igs at home	?	YES	NO						
If YES, e	explain											
Have you eve	er had respiratory symptoms while using these pr	roducts at h	ome?		YES	NO						
If YES, e	explain											
FOR PHYSICIA	ANS USE ONLY (circle one):											
	No Asthma											
Impression:	Non-occupational Asthma											
	Occupational Asthma											
	Bronchitis											
Physician Signa	iture:		Date:									

APPENDIX II

INSTRUCTIONS FOR PEAK FLOW MEASUREMENT

You have been supplied with a **portable peak flow meter device** in order to do serial recordings of your pulmonary function by measuring your own peak flow rates. This will help us evaluate any potential breathing problems related to your exposures at work. It is very important that you follow these instructions very carefully to minimize errors. Ideally you should take peak flow measurements for a total of four weeks to include <u>2 weeks at work and 2 weeks away from work exposure to suspect chemical.</u> While doing your regular job, follow normal work routines and make sure you handle chemicals as you normally would. For the next phase, <u>completely eliminate exposure to the suspect chemical at work for 7-10 days.</u> You may consider arranging to take vacation time away from work during that period

- 1. Hold the Peak Flow Meter device level, be sure the air holes in back and the arrow on top are not covered. Stand up. Take as deep a breath as possible. Put your mouth around the mouthpiece, sealing your lips around the mouthpiece. Blow out as hard and as fast as you can. No need for a long exhalation. A short hard huff is okay.
- 2. Reset the arrow on top. Do the procedure 3 times and record all three readings in the boxes of the supplied Peak Flow recording form. Take a measurement (3 repeat readings) every 3-4 hours while awake. Take a minimum of 4 sets of measurements per day for four weeks. Weeks one and two should be while exposed to diisocyanate, using pages 1 and 2 for the first week_ (Days 1-7), pages 3 and 4 for the second week of recordings (Days 8-14). Weeks three and four should be away from exposure, using pages 5 and 6 for the third week, and pages 7 and 8 for the 4th week of monitoring
- **3.** All peak flow measurements should be done BEFORE taking any asthma medication. If an asthma inhaler has been used in the past two hours, please note this in the box supplied on the form.
- **4.** Record any symptoms of wheezing, shortness of breath, chest tightness at the time of the peak flow recording by checking all the boxes that apply.

APPENDIX II

PEAK FLOW METER DIARY (14/28 DAYS)

NAME:

______ WORK SHIFT (e.g. 7AM-3PM) ______ DATE DISPENSED:

21 of 25

INSTRUCTIONS:

- 1. Hold the Peak Flow Meter level, be sure the air holes in back are not covered. Stand up. Take as deep a breath as possible. Put your mouth around the mouthpiece, sealing your lips around the mouthpiece. Blow out as hard and as fast as you can. No need for a long exhalation. A short hard huff is okay.
- 2. Reset the arrow. Do procedure 3 times and record all three readings in box (see example Day 1) every 3-4 hours while awake.
- 3. Evening peak flows and morning peak flows should be done BEFORE taking any asthma medication. If an asthma inhaler has been used in the past two hours please note this on the diary by putting an M (for medication) next to the time of the reading.
- 4. Record symptoms of wheezing, shortness of breath, cough or chest tightness at the time of the peak flow recording by circling(\$) (for symptoms) in the left corner of each box.

Time	DAY													
(Circle AM or PM)	1	2	3	4	5	6	7	8	9	10	11	12	13	14
AM														
PM														
	S	S	S	S	S	S	S	S	S	S	S	S	S	S
AM														
PM														
	S	S	S	S	S	S	S	S	S	S	S	S	S	S
AM														
PM														
	S	S	S	S	S	s	S	S	S	S	S	S	S	S
AM														
РМ														
	S	S	S	S	S	S	S	S	S	S	S	S	S	S
AM														
PM														
	S	S	S	S	S	S	S	S	S	S	S	S	S	S
AM														
PM														
	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Work Day?														
Y or N														Pag

APPENDIX III

SAMPLE PEAK FLOW METER 14 DAY DIARY

NAME: John Doe

___ WORK SHIFT (e.g. 7AM-3PM) ___ 7am – 3pm ____ DATE DISPENSED: Feb 2016

Timo	DAV 1	DAV 2	DAV 3	DAV 4	DAV 5	DAV 6	DAV 7	DAV 8	ΠΑΥ Ο	DAV 10	DAV 11	DAV 12	DAV 12	DAV 14
(Circle AM or PM)	Mon		Wed	DAI 4	DAIJ	DATO	DAT /	Mon	DAI 9	Wed	Thurs	DAT 12	DAT 15 Cot	DAT 14
	MOII	rues	T20	111015	F11 450	Sat	5ull	420	1005	- T20		F 11	Sat	Sun
	540	600	530	420	450	600	570	420	420	520	550	500	620	640
	550	580	530	500	450	600	560	450	440	540	520	50	510	600
06:00 AM	530	550	480	410	490	600	600	500	450	540	550	490	620	650
				MED										
	Avg 540	Avg 577	Avg 513	Avg 443	Avg 463	Avg 600	Avg 577	Avg 45	Avg 437	Avg 533	Avg 540	Avg 500	Avg 617	Avg 630
	S	S	S	S	S	S	S	S	S	S	S	S	S	S
	550	520	560	550	550	500	550	420	440	580	560	540	660	640
	535	450	590	550	550	520	570	450	440	560	560	540	660	620
12.00 DM	565	550	600	500	570	550	580	440	450	510	480	550	656	650
12:00 PM						MED							MED	
	Avg 550	Avg 507	Avg 583	Avg 533	Avg 557	Avg 523	Avg 567	Avg 437	Avg 447	Avg 550	Avg 533	Avg 543	Avg 655	Avg. 637
	S	S	S	S	S	S	S	S	S M	S	S	S	S	S
	540	590	520	550	540	550	560	460	400	600	450	480	650	640
	540	520	550	545	550	560	580	490	450	420	480	470	650	600
20.00 DM	515	590	540	480	600	580	580	450	450	400	510	500	620	600
20:00 PM				MED										
	Avg 532	Avg 567	Avg 536	Avg 525	Avg 563	Avg 563	Avg 573	Avg 467	Avg 433	Avg 473	Avg 517	Avg 483	Avg 640	Avg 613
	S	S	S	S	S	S	S	S	S M	S	S	S	S	S
AM														
РМ														
	S	S	S	S	S	S	S	S	S	S	S	S	S	S
AM	0	0	0	0	0		0	0	5	0				5
PM														
1 1.1														
4.14	3	5	5	5	5	3	3	3	3	3	3	3	3	3
AM														
PM														
	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Work Day? Y or N	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No

Mon: Monday; Tue: Tuesday; Wed: Wednesday; Thurs: Thursday; Fri: Friday; Sat: Saturday; Sun: Sunday; Avg: Average of 3 readings

SIndicates symptoms observed at time of PEFR. M: Medicine administered within 2 hours of PEFR

Figure 5. Plot of the PEFR record in APPENDIX III for a fictitious worker. Shown as time in days (14) versus the peak expiratory flow rate (L/min). *: Indicates when symptoms were observed. M: Indicates when medicine was administered within 2 hours of PEFR measurement.

References

Anees, W. (2003). Use of pulmonary function tests in the diagnosis of occupational asthma. *Ann Allergy Asthma Immunol*, **90**, 47-51.

Anees, W., Gannon, P. F., Huggins, V., Pantin, C. F., and Burge, P. S. (2004). Effect of peak expiratory flow data quantity on diagnostic sensitivity and specificity in occupational asthma. *Eur Respir J*, **23**, (5), 730-4.

Bernstein, I. L., Bernstein, D. I., Chan-Yeung, M., and Malo, J. L. (1993). Definition and classification of asthma. *In: Asthma in the workplace, eds. IL Bernstein et al*, 1-4.

Bernstein, I. L., Bernstein, D. I., Chan-Yeung, M., and Malo, J. L. (2013). Definition and classification of asthma. *In: Asthma in the workplace, 4th ed. CRC Press - Taylor & Francis Group, Boca Raton, Florida. (ISBN 978-1-84214-591-3).* 978-1-84214-591-3.

Bernstein, I. L., Chan-Yeung, M., Malo, J. L., and Bernstein, D. I. (2006). Asthma in the workplace, 3rd ed. ISBN: 0-8247-2977-3.

Brooks, S. M., Weiss, M. A., and Bernstein, I. L. (1985). Reactive airways dysfunction syndrome (RADS): persistent asthma syndrome after high level irritant exposures. *Chest*, **88**, (3), 376-84.

Buyantseva, L. V., Liss, G. M., Ribeiro, M., Manno, M., Luce, C. E., and Tarlo, S. M. (2011). Reduction in diisocyanate and non-diisocyanate sensitizer-induced occupational asthma in Ontario. *J Occup Environ Med*, **53**, (4), 420-6.

Cockcroft, D. W. (2003). Bronchoprovocation methods: direct challenges. *Clin Rev Allergy Immunol*, **24**, (1), 19-26.

de Olim, C., Bégin, D., Boulet, L., Cartier, A., Gérin, M., and Lemière, C. (2015). Investigation of occupational asthma: do clinicians fail to identify relevant occupational exposures? *Can Respir J*, **22**, (6), 341-7.

Durham, S. R., Graneek, B. J., Hawkins, R., and Newman Taylor, A. J. (1987). The temporal relationship between increases in airway responsiveness to histamine and late asthmatic responses induced by occupational agents. *J Allergy Clin Immunol*, **79**, (2), 398-406.

Klees, J. E. and Ott, M. G. (1999). Diisocyanates in polyurethane plastics applications. *Occup Med* (*Lond*), **14**, (4), 759-76.

Lushniak, B. D., Reh, C. M., Bernstein, D. I., and Gallagher, J. S. (1998). Indirect assessment of 4,4'-diphenylmethane diisocyanate (MDI) exposure by evaluation of specific humoral immune responses to MDI conjugated to human serum albumin. *Am J Ind Med*, **33**, 471-7.

Meyer, J. D., Holt, D. L., Cherry, N. M., and McDonald, J. C. (1999). SWORD '98: surveillance of work-related and occupational respiratory disease in the UK. *Occup Med (Lond)*, **49**, (8), 485-9.

Nicholson, P. J., Cullinan, P., Newman Taylor, A. J., Burge, P. S., and Boyle, C. (2005). Evidence based guidelines for the prevention, identification, and management of occupational asthma. *Occup Environ Med*, **62**, 290-9.

Perrin, B., Cartier, A., Ghezzo, H., Grammer, L., Harris, K., Chan, H., Chan-Yeung, M., and Malo, J. L. (1991). Reassessment of the temporal patterns of bronchial obstruction after exposure to occupational sensitizing agents. *J Allergy Clin Immunol*, **87**, 630-9.

Pralong, J. A., Lemiere, C., Rochat, T., L'Archeveque, J., Labrecque, M., and Cartier, A. (2016). Predictive value of nonspecific bronchial responsiveness in occupational asthma. *J Allergy Clin Immunol*, **137**, (2), 412-6.

Tarlo, S. M. (2014). Clinical aspects of work-related asthma: Past achievements, persistent challenges, and emerging triggers. *J Occup Environ Med*, **56**, (Suppl.10), S40-4.

Tarlo, S. M. (2015). The role and interpretation of specific inhalation challenges in the diagnosis of occupational asthma. *Can Respir J*, **22**, (6), 322-3.

Tarlo, S. M., Balmes, J., Balkissoon, R., Beach, J., Beckett, W., Bernstein, D., Blanc, P. D., Brooks, S. M., Cowl, C. T., Daroowalla, F., Harber, P., Lemiere, C., Liss, G. M., Pacheco, K. A., Redlich, C. A., Rowe, B., and Heitzer, J. (2008). Diagnosis and management of work-related asthma: American College Of Chest Physicians Consensus Statement. *Chest*, **134**, (3 Suppl), 1S-41S.

Tarlo, S. M. and Liss, G. M. (2002). Diisocyanate-induced asthma: diagnosis, prognosis, and effects of medical surveillance measures. *Appl Occup Environ Hyg*, **17**, (12), 902-8.

Tee, R. D., Cullinan, P., Welch, J., Sherwood Burge, P., and Newman-Taylor, A. J. (1998). Specific IgE isocyanates: a useful diagnostic role in occupational asthma. *J Allergy Clin Immunol*, **101**, (5), 709-15.