

### **CODE BULLETIN C-62**

# American Chemistry Council Product Approval Code of Practice January 2018 Edition

| То:         | Practitioners of the American Chemistry Council Product Approval     |  |  |
|-------------|----------------------------------------------------------------------|--|--|
|             | Code of Practice and Interested Parties                              |  |  |
| Original    |                                                                      |  |  |
| Issue date: | June 20, 2019                                                        |  |  |
| Effective   |                                                                      |  |  |
| Date:       | July 18, 2019                                                        |  |  |
| Re:         | Acceptance of the Sequence IIIH60 & IIIH70 into the Product Approval |  |  |
|             | Code of Practice – January 2018 Edition and Sequence IX MTAC Update  |  |  |

The American Chemistry Council's (ACC) Product Approval Protocol Task Group (PAPTG) reached consensus to accept the Sequence IIIH60 & IIIH70 into the Product Approval Code of Practice. Sequence IIIH60 & IIIH70 information is incorporated into the following Appendices:

Appendix A- Requirements for Engine Test Stand/Laboratory Calibration Appendix B- Candidate Scheduling, Registration and Tracking Procedure Appendix F- Multiple Test Evaluation Procedures Appendix H- Guidelines for Minor Formulations Modifications Appendix I- Program Guidelines

Additionally, there has been an update to the Sequence IX MTAC and transformation of rated parameters since the Sequence IX was accepted into the Product Approval Code of Practice.

Existing text and proposed edits to the relevant Appendices are provided below. Please note: existing text and proposed edits are combined; existing text is in black and proposed edits are in **red text**.

# Existing Text and Proposed Text on Page A-1

Discussion

Details on the calibration requirements are provided in the <u>ASTM Lubricant Test Monitoring</u> <u>System (LTMS) Manual</u> defined in ASTM Test Monitoring Center Technical Memorandum 94-200. This



#### American Chemistry Council Code Bulletin C-62 June 20, 2019 Page 2

manual *must* be adhered to for the purposes of ACC calibration. The manual may be obtained from the ASTM TMC at the following address:

#### ASTM Test Monitoring Center, 6555 Penn Avenue, Pittsburgh, PA 15206-4489 (phone) 412/365-1000, (fax) 412/365-1047

When the use of the LTMS is called for, there is a potential need for the application of engineering judgment. The process for acceptance of such engineering judgment is included as Addendum A1, in this Appendix.

The requirements for the engine test types currently covered by the Code are defined by test type as:

Sequences IIIF, IIIFHD, IIIFVS, IIIG, IIIGA, IIIGB, IIIGVS, IIIH, IIIHA, IIIHB, IIIH60, IIIH70, IVA, IVB VG, VH, VID, VIE, VIF, VIII, IX, X; Caterpillar 1K, 1M-PC, 1N, 1P, 1R, C13, Caterpillar engine Oil Aeration Test (COAT); Mack T-8, T-8E, T-11, T-12; RFWT; Cummins ISB, ISM and Volvo T-13.

### Existing Text and Proposed Text on Page B-3

e) Test: An up-to-eight character code used to designate the type of test run.

This code is permanent for each test type and is assigned by the ACC Monitoring Agency. The Test Sponsor inserts this code.

Ŵ

### Existing Text and Proposed Text on Page F-4 through F-7

#### MTEP Methods for Rated Parameters

As indicated in the "MTEP Guidelines" section above, when a specification includes requirements for handling data from multiple tests, the specified MTEP method shall be used for that specification. However, for any specification that does not specify an MTEP method (e.g., an ACEA specification); the technique specified in the following table shall be used.

| Test                                  | Type of<br>MTEP | Parameter (Units) (note 1)                             |
|---------------------------------------|-----------------|--------------------------------------------------------|
| Sequence IIIF                         | MTAC            | Kinematic Viscosity (% increase at 40°C)               |
|                                       | MTAC            | Avg. piston skirt varnish (merits)                     |
|                                       | MTAC            | Weighted piston deposit (merits)                       |
|                                       | MTAC            | Screened avg. cam plus lifter wear (µm)                |
|                                       | (note 2)        | Hot stuck rings                                        |
| Sequence IIIFHD                       | MTAC            | Kinematic Viscosity @ 60 h (% increase)                |
| Sequence IIIG                         | MTAC            | Kinematic Viscosity (% increase at 40°C)               |
|                                       | MTAC            | Weighted piston deposit (merits)                       |
|                                       | MTAC            | Avg. cam plus lifter wear (μm)                         |
|                                       | (note 2)        | Hot stuck rings                                        |
| Sequence IIIGA None No MTEP, No MTAC  |                 | No MTEP, No MTAC                                       |
| Sequence IIIGB                        | MTAC            | Phosphorus retention (%)                               |
| Sequence IIIH                         | MTAC            | Kinematic Viscosity (% increase at 40°C)               |
|                                       | MTAC            | Weighted piston deposit (merits)                       |
| Sequence IIIHA MTAC MRV Viscosity (%) |                 | MRV Viscosity (%)                                      |
| Sequence IIIHB                        | MTAC            | Phosphorus retention (%)                               |
| Sequence IIIH60                       | MTAC            | Kinematic Viscosity (% increase at 40°C)               |
| Sequence IIIH70                       | MTAC            | Kinematic Viscosity (% increase at 40°C)               |
|                                       | MTAC            | Weighted piston deposit (merits)                       |
|                                       | MTAC            | Average Piston Skirt Varnish (merits)                  |
| Sequence IVA                          | MTAC            | Avg. cam wear (µm)                                     |
| Sequence IVB                          | MTAC            | Avg Volume Loss Intake Bucket Lifter(mm <sup>3</sup> ) |
|                                       | MTAC            | End of Test Iron (mg/kg)                               |
| Sequence VG                           | MTAC            | Avg. engine sludge (merits)                            |
|                                       | MTAC            | Rocker arm cover sludge (merits)                       |
|                                       | MTAC            | Avg. piston skirt varnish (merits)                     |
|                                       | MTAC            | Avg. engine varnish (merits)                           |
|                                       | MTAC            | Oil screen clogging (%)                                |
|                                       | (note 3)        | Hot stuck compression rings                            |

| Page 4         | 11            |                                                                                             |
|----------------|---------------|---------------------------------------------------------------------------------------------|
| Sequence VH    | MTAC          | Avg. engine sludge (merits)                                                                 |
|                | MTAC          | Rocker arm cover sludge (merits)                                                            |
|                | MTAC          | Avg. piston skirt varnish (merits)                                                          |
|                | MTAC          | Avg. engine varnish (merits)                                                                |
|                | (note 3)      | Hot stuck compression rings                                                                 |
| Sequence VID   | MTAC          | FEI 2 (%)                                                                                   |
|                | MTAC          | FEI SUM (%)                                                                                 |
|                |               |                                                                                             |
| Sequence VIE   | MTAC          | FEI 2 (%)                                                                                   |
| •              | MTAC          | FEI SUM (%)                                                                                 |
| Sequence VIF   | MTAC          | EEL2 (%)                                                                                    |
| Sequence VIF   |               | FEI 2 (%)<br>FEI SUM (%)                                                                    |
|                | MTAC          |                                                                                             |
| Sequence VIII  | MTAC          | Bearing weight loss (mg)                                                                    |
| Sequence IX    | MTAC          | Average Number of Preignitions                                                              |
| Soguenee V     | MTAC          | Maximum Event                                                                               |
| Sequence X     | MTAC          | Chain Wear Stretch (%)                                                                      |
| Caterpillar 1K | TLM           | WDK (demerits)                                                                              |
|                | TLM           | Top Groove Fill (%)                                                                         |
|                | TLM           | Top Land Heavy Carbon (%)                                                                   |
|                | TLM           | Avg. Oil Consumption (g/kW·h)                                                               |
|                | (note 4)      | Piston Ring Sticking (yes or no)                                                            |
|                | (note 5)      | Piston, Ring and Liner Scuffing (yes or no)                                                 |
| Caterpill      | MTAC (note 6) | WTD (demerits)                                                                              |
| ar 1MPC        | MTAC          | Top Groove Fill (%)                                                                         |
| (note 5)       | (note 4)      | Piston Ring Sticking (yes or no)                                                            |
|                | (note 7)      | Piston, Ring and Liner Scuffing (yes or no)                                                 |
| Caterpillar 1N | TLM           | WDN (demerits)                                                                              |
|                | TLM           | Top Groove Fill (%)                                                                         |
|                | TLM           | Top Land Heavy Carbon (%)                                                                   |
|                | TLM(note 4)   | Oil Consumption (g/kWh)                                                                     |
|                | (note 5)      | Piston Ring Sticking (yes or no)                                                            |
|                |               | Piston, Ring and Liner Scuffing (yes or no)                                                 |
|                |               |                                                                                             |
| Caterpillar 1P | TLM           | WDP (demerits)                                                                              |
|                | TLM           | Top Groove Carbon (demerits)                                                                |
|                | TLM           | Top Land Carbon (demerits)                                                                  |
|                | TLM           | Avg. Oil Consumption (0-360h) (g/h)                                                         |
|                | TLM(note 5)   | Final Oil Consumption (312-360h) (g/h)                                                      |
|                |               | Piston, Ring and Liner Scuffing (yes or no)                                                 |
| Caterpillar 1R | TLM           | WDR (demerits)                                                                              |
|                | TLM           | Top Groove Carbon (demerits)                                                                |
|                | TLM           | Top Land Carbon (demerits)                                                                  |
|                | TLM           | Avg. Initial (0-252 h) Oil Consumption (g/h)                                                |
|                |               |                                                                                             |
|                | TLM(note 5)   | Avg. Final (432-504 h) Oil Consumption (g/h)<br>Piston, Ring and Liner Scuffing (yes or no) |

| MDC                                                                   | Cotorpillor C12 Marita                                             |
|-----------------------------------------------------------------------|--------------------------------------------------------------------|
| -                                                                     | Caterpillar C13 Merits                                             |
|                                                                       | Delta Oil Consumption (g/h)                                        |
| (note o)                                                              | Average Top Land Carbon (Demerits)                                 |
|                                                                       | Average Top Groove Carbon (Demerits)                               |
|                                                                       | Second Ring Top Carbon (Demerits)                                  |
|                                                                       | Cummins ISM Merits                                                 |
| (note 8)                                                              | Crosshead Weight Loss (mg)                                         |
|                                                                       | Injector Screw Wear (mg)                                           |
|                                                                       | Oil Filter Pressure Delta (kPa)                                    |
| <b>T</b> I N 4                                                        | Sludge (merits)                                                    |
| ILM                                                                   | Top Ring Weight Loss (mg)                                          |
| TLM                                                                   | Average Camshaft Wear (µm)                                         |
| TLM                                                                   | Average Tappet Weight Loss (mg)                                    |
| Mack T-8 TLM Viscosity Increase at 3.8% so                            |                                                                    |
| TLM                                                                   | Filter Plugging, Differential Pressure (kPa)                       |
| TLM                                                                   | Oil Consumption (g/kWh)                                            |
| TLM                                                                   | Viscosity Increase at 3.8% soot (cSt)                              |
| TLM                                                                   | Relative Viscosity at 4.8% soot (unitless number)                  |
| Mack T-11TLMTGA % Soot @ 4.0 cSt increasTGA % Soot @ 12.0 cSt increas |                                                                    |
|                                                                       |                                                                    |
| TLM                                                                   | Liner Wear, µm                                                     |
|                                                                       | Top Ring Mass Loss, mg                                             |
|                                                                       | Lead Content at EOT, mg/kg                                         |
| MRS                                                                   | Cylinder Liner Wear, µm                                            |
|                                                                       | Top Ring Mass Loss, mg                                             |
|                                                                       | Delta Pb @ EOT, mg/kg                                              |
|                                                                       | Delta Pb 250 to 300 hours, mg/kh                                   |
|                                                                       | Oil Consumption, g/hr                                              |
| MTAC                                                                  | Top Ring Mass Loss, mg                                             |
|                                                                       | Cylinder Liner Wear, µm                                            |
| ( ·····-/                                                             |                                                                    |
| TLM                                                                   | IR Peak at EOT, Abs., cm <sup>-1</sup>                             |
|                                                                       | Kinematic Viscosity Increase at 40°C, %                            |
| MTAC                                                                  | Average Aeration, 40h to 50h, %                                    |
| (note 12)                                                             |                                                                    |
|                                                                       | TLM<br>TLM<br>TLM<br>TLM<br>TLM<br>TLM<br>TLM<br>TLM<br>TLM<br>TLM |

Notes:

- 1. Units for parameters in italics are transformed. See next section for specific transformations.
- 2. The majority of retained tests must not have ring sticking (hot stuck).
- 3. The majority of retained tests must not have compression ring sticking (hot stuck).
- 4. None of the retained tests may have piston ring sticking.
- 5. If three or more operationally valid tests have been run, the majority of these tests must not have scuffing. Any scuffed tests are considered non-interpretable, and no data from these tests are to be used in MTEP calculations.
- 6. Two methods of calculating WTD are used, one for API Category CF and a different one for API Category CF-2. Both methods use MTAC for handling test results.

#### American Chemistry Council Code Bulletin C-62 June 20, 2019 Page 6

- 7. None of the retained tests may have piston, ring or liner scuffing.
- 8. The parameters used in calculating the Merit Rating value are shown.
- 9. This TLM applies to Mack T-12 used in API Category CH-4.
- 10. This MRS applies to Mack T-12 used in API Category CI-4 and CJ-4.
- 11. This MTAC applies to Mack T-12 used in API Category CK-4 and FA-4.
- 12. The MTAC provision to discard any valid test result is not applicable (See Appendix F, pg. F-3, Three or More Tests, Number 2)

List of Transformations of Rated Parameters

| Test            | Parameter                                                | Transformation                                    |
|-----------------|----------------------------------------------------------|---------------------------------------------------|
| Sequence IIIF   | Viscosity, % Increase                                    | 1/square root of the<br>% increase at 80<br>hours |
| Sequence IIIFHD | Viscosity, % Increase                                    | LN (PVISH060)                                     |
| Sequence IIIG   | Viscosity, % Increase<br>Avg. cam plus lifter wear       | LN (PVISH100)<br>LN (ACLW)                        |
| Sequence IIIH   | Kinematic Viscosity (% increase at 40°C)                 | LN (PVIS)                                         |
| Sequence IIIHA  | MRV Viscosity (%)                                        | LN (MRV)                                          |
| Sequence IIIH60 | Kinematic Viscosity (% increase at 40°C)                 | LN(PVISH060)                                      |
| Sequence IIIH70 | Kinematic Viscosity (% increase at 40°C)                 | LN(PVISH070)                                      |
| Sequence IVB    | Avg Volume Loss Intake Bucket Lifter<br>End of Test Iron | Square root (AVLI)<br>LN (FEWMEOT)                |
| Sequence VG     | Oil Screen Clogging                                      | LN (oil screen<br>clogging +1)                    |
| Sequence VH     | Rocker Arm Cover Sludge                                  | LN(10 –<br>RCS)                                   |
| Sequence IX     | Average Number of Preignitions                           | Square root (AVPIE + 0.5)                         |
|                 | Maximum Event                                            | Square root<br>(Maximum<br>Event+0.5)             |
| Sequence X      | Chain Wear Stretch (%)                                   | LN(Chain Wear<br>Stretch)                         |
| Caterpillar 1K  | Top Land Heavy Carbon                                    | LN (TLHC + 1)                                     |
| Caterpillar 1N  | Top Land Heavy Carbon                                    | LN (TLHC + 1)                                     |
| Caterpillar 1P  | Average Oil Consumption Final<br>Oil Consumption         | LN (AOC)<br>LN (FOC)                              |
| Caterpillar C13 | Delta Oil Consumption (g/h)<br>Second Ring Top Carbon    | Square root (Delta<br>OC)<br>LN(R2TC)             |

| Mack T-12   | Delta Pb @ EOT<br>Delta Pb 250 to 300 hours Oil<br>Consumption | LN (DPbEOT)<br>LN (DPb250300)<br>LN (OC) |
|-------------|----------------------------------------------------------------|------------------------------------------|
| Cummins ISM | Oil Filter Pressure Delta                                      | LN (OFDP)                                |
| Volvo T-13  | Kinematic Viscosity Increase at 40°C                           | Square root (KV40)                       |

## Existing Text and Proposed Text on Page H-1 through H-2

The General Guidelines for minor modifications apply to all of the tests accepted into the ACC Code of Practice. Specific guidelines are provided for the following engine test Sequences IIIF, IIIG, IIIH, IIIH60, IIIH70, IVA, IVB, VG, VH, VID, VIE, VIF, VIII, IX, and X are listed in the section titled "Guidelines for Specific Engine Tests".

### **Guidelines for Specific Engine Tests**

The numbered guidelines listed here are applicable only to Sequence IIIF, IIIG, IIIH, IIIH60, IIIH70, IVA, IVB, VG, VH, VID, VIE, VIF, VIII, IX, and X engine tests. Guideline 11 must be consulted when applying these guidelines to the Sequence IX test as indicated by footnote 1 in this section. Specific tests have been included in these guidelines based on a thorough review by the Minor Formulation Modification Working Group and acceptance by the Petroleum Additives Product Approval Protocol Task Group. These tests have been judged to respond either beneficially or without harm to formulation changes allowed by the numbered guidelines. This judgment is based on collective internal company data, previous generation tests and on basic formulation knowledge.

### Existing Text and Proposed Text on Page I-1

2. When conducting base oil interchange, the final commercial formulation must contain all minor formulation modifications. For the Sequences IIIF, IIIG, IIIH, IIIH60, IIIH70, IVA, IVB, VG, VH, VID, VIE, VIF, VIII, IX, and X engine tests in the Code, the total number of changes from the tested formulations may not exceed four, including all changes made for base oil interchange. When using a matrix core data set based on the engine tests listed above, the number of changes may not exceed four. Support data, as defined in <u>Tab 1</u>, must be provided.

The Code is available online at <u>http://www.americanchemistry.com/paptg</u>. Comments to this Code Bulletin (C-62) should be sent to the PAPTG Manager <u>W.D. (Doug) Anderson</u> prior to July 18, 2019.